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INTRODUCTION

The history of subcritical cryogenic fluid management (CFM) technology development at NASA
began in the early 1960’s as the need for such technology was recognized. Two NASA centers, Lewis
Research Center (LeRC) and Marshall Space Flight Center (MSFC), were active in CFM and worked
independently; each approached the problem from different perspectives. As a research center, LeRC
concentrated on understanding the underlying physics of fluid behavior through a series of basic
experiments. As a development center, MSFC was interested in solving specific engineering problems
with direct application to existing or future systems. Many design studies for CFM space experiments
have been performed by both centers, but none have been built during the past 25 years. The need for
CFM space experimentation has been presented many times. This essay traces the history of NASA
efforts to investigate and develop CFM technology through space flight experiments.

TECHNICAL BACKGROUND

Cryogenic fluid management is a term used by NASA and its contractors to encompass the
technology for handling subcritical cryogens (other than helium) in space. In low gravity, liquid does
not stay at the "bottom" of a tank and the location of a liquid in a tank is not certain. For non-
cryogenic liquids, bladders are a simple technology for extracting liquid from a tank. For cryogens,
however, there are no satisfactory flexible bladder materials for separating liquid and vapor, and even
if there were, vapor would still form on the liquid side due to heat addition. Cryogens are difficult to
store because the liquids are near their boiling point (hundreds of degrees below 0 °F, much colder
than ambient) and a small heat leak can cause vaporization and pressure rise. Transferring cryogens to
warm tanks efficiently is also a challenge. CFM technology deals with the storage, supply and transfer
of normal, subcritical cryogenic liquids in space.

Cryogens are important for space engineering for several reasons. The most important uses are
as propellants and reactants. Liquid hydrogen (LH,)/liquid oxygen (LOX) rocket propellants are very
efficient (high specific impulse) and are the propellants of choice for many missions. LH, and LOX
are also used as reactants for electric power generation in fuel cells. These and other cryogens are
used in many other types of systems. The cryogenic form of desired elements is preferred because the
density of cryogenic liquid allows storage of a large mass in a small, relatively lightweight tank.
Liquid helium is generally considered separately from other cryogens since it has many unusual pro-
perties that allow unique solutions to fluid management problems. Supercritical storage of cryogens
has been used successfully in space, but only small amounts of cryogen can be used due to the high
pressures and corresponding heavy storage tanks that are involved. CFM technology is needed for
large-scale future missions such as lunar bases or manned Mars exploration; these would require much
larger amounts of cryogens than have been stored before.

CFM technologies can be divided into two general areas, storage and transfer. Storage prob-
lems center around controlling tank pressure as heat leaks into a tank. When vapor must be removed




from a tank to reduce pressure in low gravity, the vapor is not necessarily over the vent outlet. There
also is a lack of gravity-driven convection and buoyancy so that the liquid can thermally stratify and
vapor bubbles can grow around hot spots in the tank. The proposed solution to the pressure control
problem is using mixers to destratify the liquid and thermodynamic vent systems (TVS) to remove
energy from the tank. A TVS is basically an open loop refrigeration system. The transfer problem
consists of liquid acquisition (supply), chilldown of warm tanks and lines, and filling tanks. Liquid
acquisition refers to removing liquid from a tank without including vapor or bubbles. This can be
done by settling the tank contents with small thrusters to position liquid over the outlet or by using a
liquid acquisition device (LAD) fabricated from fine mesh screen which filters out vapor from the
liquid. There are other technologies important to CFM, but storage and transfer are the key areas that
need space experimentation.

THE GOOD OL’ DAYS

In the 1960’s, NASA was forging ahead with confidence into a future that included space sta-
tions and Mars missions that were sure to follow the success of the Apollo program. It was obvious
that the storage and transfer of huge amounts of cryogenic propellants would be required and that
CFM technology was needed. Early estimates of Mars mission schedules projected that CFM technol-
ogy was needed by the mid-1970’s.

LeRC had been involved in liquid hydrogen research for rocket engine applications since 1956
when it was part of the National Advisory Committee on Aeronautics (NACA). In support of rocket
research, LeRC branched out into many aspects of cryogenic engineering. In 1962, management of
the Centaur program was reassigned to LeRC from MSFC where it had been managed since 1960.
Centaur was the first operational, liquid hydrogen-fueled launch vehicle. This broadened LeRC inter-
ests from basic research to an operational vehicle application for liquid hydrogen technology.

LeRC had various facilities in the early 1960’s for pursuing basic research in CFM technology.
Insulation studies were performed in large vacuum chambers. Low-gravity testing was performed in
three ways. A drop tower was used to achieve 2.3 sec of free fall. Air drag was minimized by drop-
ping an experiment package inside a drag shield and the packages were decelerated in a sand box.
The experiments were small, and 2.3 sec is long enough only to observe limited, low-gravity fluid
dynamic phenomena. Later, LeRC built a larger drop facility that was essentially a long vacuum
chamber sunk 500 ft into the ground. This "large" drop tower provided an essentially zero-gravity
environment for 5 sec. Airplanes flying parabolic trajectories provided up to 20 sec of low gravity
followed by a like period of 2-g acceleration. However, the acceleration level provided is not very
low (0.01 g) and is noisy. The third type of zero-g facility was rocket based. Aerobee sounding
rockets that reached altitudes of around 100 miles provided 3 to 5 min of 10 g for payload weights
of several hundred pounds. Pods attached to the side of the Atlas launch vehicle (known as Atlas
Scientific Passenger Pods) were ejected at high altitudes and provided up to 25 min of zero-g for pay-
loads of up to 400 1b (ref. 1(a)).

A liquid hydrogen experiment to investigate pressure rise rates in a 9-in. diameter spherical tank
was launched on a Aerobee on February 5, 1961 by LeRC scientists (ref. 10). Eight more flights
(including two failures) were conducted over the next few years which focused on the investigation of
the pressure response of the tank to uniform and nonuniform heat inputs (refs. 11 to 14 and 55). One
Aerobee experiment (flight) also demonstrated the effectiveness of a standpipe to serve as a liquid
positioning device under low-gravity conditions. Liquid hydrogen experiments were also flown on the




Atlas launch vehicle in the pod carrier. The first two experiments were not successful, but the third
flight on February 25, 1964 was (ref. 15).

In October 1963, a meeting was held at NASA Headquarters for the Office of Advanced
Research and Technology (OART, known as Code R from the NASA organization chart) to identify
and discuss problems in zero-g cryogenic fluid management; all NASA centers were represented at
that meeting (ref. 1). Code R was responsible for the development of technology like CFM and was
the HQ office that LeRC personnel reported to. Presentations from the Manned Spacecraft Center
(MSC, later Johnson Space Center, JSC) and MSFC covered requirements for research by the Apollo
and Saturn developers. These centers worked for the Office of Space Flight (OSF) and would be the
users of technology developed by Code R.

MSC requirements for CFM technology to support Apollo and for future manned space projects
"such as a 400-day Mars fly-by" were presented by Jerry C. Smithson (ref. 1b):

From a propulsion system standpoint, the problems of zero-gravity may be classified in two
broad categories: 1) propellant orientation and 2) heat transfer. The primary interest of MSC at
the present time is that of the effects of zero-g on the propellants. The category of propellant
orientation can be broken down in the following manner: 1) expulsion, 2) measurement, 3)
pressure relief, 4) slosh, and 5) transfer of fluid in a zero-gravity environment....

A few specific items of interest are the following: 1) analytical methods, 2) convection in zero
and low-gravity fields, and 3) propellant stratification.

G.K. Platt presented MSFC needs (ref. Ic):

I. Scaling: It is understood that the Bond number can be used as a gross scaling factor to
determine propellant configuration and location in tanks, but in narrow corners what can be
used as a characteristic length, will bubbles be caught and remain there?

2. Propellant temperature stratification: More knowledge is required concerning stratification
temperature profiles and means of estimating tank pressure rise rates.

3. Venting: Studies should be made concerning mixing of stratified layers with bulk liquid
during propellant settling, bubble formation, bubble size, and rise velocities during venting,
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sloshing at low "g", and performance of liquid-vapor separators.

4. Engine restart: More work is required on bubble recondensation rates in flowing systems due
to compression and the effect on pumps of ingested bubbles.

These technology requirements remain valid today. More than a dozen LeRC researchers presented
information on their work on ground and flight experimentation. The conclusion of OART was that
the state-of-the-art was improving, but much additional study and testing would be needed to support
space vehicle design. This was the first of many reviews to determine if the right thing was being
done in CFM technology.

Launch vehicle development experiments were performed on early test flights of cryogen-fueled
rockets beginning with the flight of AC-4 in December 1964 (ref. 16). AC-4 was a development flight
of the Atlas-Centaur launch vehicle that was managed by LeRC and built by General Dynamics.
Responsibility for Centaur was transferred from MSFC to LeRC because of Lewis’ expertise in




hydrogen engines and zero-g fluid management. The fourth and eighth Atlas-Centaur vehicles (AC-4
and AC-8) were used to study cryogenic fluid management during coast for engine restart. On the
AC-4 flight, venting of liquid rather than gaseous hydrogen caused the vehicle to tumble out of con-
trol. Modifications made to the AC-8 vehicle controlled venting and slosh problems. The AC-8 flight
in April 1966 demonstrated that propulsive settling could be used to control fluid locations, although
the thrust levels used were very conservative. Some thermal data in the hydrogen tank was also
obtained (ref. 18).

In July 1966, MSFC used a Saturn IB development mission (AS-203) to investigate liquid
hydrogen management in the S-IVB stage. MSFC managed the Saturn program and the S-IVB was
built by McDonnell Douglas. Television cameras inside the tank verified that the liquid was properly
settled (ref. 17). The next month, a contract study with McDonnell Douglas was initiated by MSFC to
design a cryogenic fluid research laboratory that would be put into orbit by a Saturn launch vehicle
with astronaut participation for the first 7 days of a 14-day mission. This study was known as Project
THERMO (ref. 19). Project THERMO marked the end of the era of actual space experiments and the
beginning of decades of paper studies.

Project THERMO (Thermo and Hydrodynamic Experiment Research Module in Orbit) was to
be an orbital research laboratory that would investigate CFM as a follow-on to the lunar landing
program using Apollo hardware (figs. | and 2). THERMO would consist of a lunar excursion module
(LEM) attached to an enclosed experiment structure containing several modular experiments. The
effort got as far as a preliminary design in March 1967 before it was downsized to fit on an unmanned
launch vehicle, such as an Atlas (ref. 20). The objective of the project was to resolve CFM technol-
ogy gaps for manned Mars missions by 1971. MSFC attempted to sell the project to HQ, but "dimin-
ishing budget and low priorities resulted in a rejection of the proposal..." (ref. 41).

In November 1969, Code R invited LeRC to propose a CFM experiment to support the space
station program that was being anticipated by NASA as the follow-on to Apollo. The requesting letter
stated, "The final experiment must be ready for flight in January 1974" (ref. 41).

INTO THE MORASS

In January 1971, as an outgrowth of its ground-based investigations, LeRC proposed a liquid
hydrogen flight experiment to Code R that would be flown on the future space shuttle. Code R
(which changed names to the Office of Aeronautics and Space Technology, OAST) formed a com-
mittee with representation from LeRC, Kennedy Space Center (KSC), JSC, MSFC, and HQ to look at
the need for the flight experiment. The Ad Hoc Committee on the Assessment of Reduced-Gravity
Fluid and Thermal Technology recommended that flight experiments to resolve low-g technology
issues be considered. The committee found that planned and potential space flight programs needed
results from further research, including flight experiments, but that current needs could be met by
ground-based experiments and analytical modeling.

In June 1976, LeRC had McDonnell Douglas perform a conceptual design of a dedicated flight
experiment in response to a Spacelab opportunity for payloads in the shuttle payload bay (ref. 22).
The experiment hardware would consist of a liquid hydrogen tank with a LAD, TVS, vapor-cooled
shield, and a vacuum jacket. The low-pressure, subcritical tank design was similar to the shuttle
power reactant storage assembly (PRSA) supercritical, high-pressure tanks which store hydrogen and
oxygen for use in the fuel cells. PRSA-size tanks were chosen to allow the use of existing tooling and
shuttle-qualified components and to provide a direct comparison between actual subcritical and



supercritical systems. The experiment would investigate tank pressure control, TVS performance,
liquid outflow, and LAD performance. LeRC held a competitive procurement for a Cryogenic Fluid
Management Experiment (CFME) and awarded a contract to Martin Marietta in November 1978 for
$1.8M to design, build, and integrate the CFME (ref. 25) onto a Spacelab pallet. At the Preliminary
Design Review (PDR), HQ personnel questioned the approach of CFME. For more than $2M total
program cost, they did not feel the experiment addressed enough of the required technologies. CFME
consisted of a single tank which dumped its liquid hydrogen overboard (fig. 3). Code R suggested the
addition of another tank to perform a transfer. Another Code R committee was formed to review the
problem while CFME design progressed.

In December 1979, the In-Space Cryogenic Fluid Management R&T Ad Hoc Planning Com-
mittee recommended a facility (Cryogenic Fluid Management Facility) approach to CEM experi-
mentation (ref. 56). A facility with a supply tank and a receiver tank that could be reflown several
times with changes to its configuration seemed to offer the maximum technology return. The CFME
program was modified to include transfer experiments using the CFME tank as a supply tank. Martin
Marietta continued working on CEME, and LeRC let another contract with Beech for a conceptual
design of a Cryogenic Fluid Management Facility (CFMF).

While LeRC was engaged in a competitive procurement for the design of the CFMF, JSC had
its shuttle contractor (Rockwell) study a similar experiment concept using PRSA tanks to investigate
subcritical transfer called the orbiter hydrogen transfer experiment (OHTE) (ref. 26). Nothing much
came of OHTE, although Rockwell continued studying the concept under Government-funded
independent research and development (IR&D) in 1982.

In September 1982, the CFMF detailed design began at Martin Marietta under contract with
LeRC (refs. 27 and 28, figs. 4 and 5). As the design progressed, certain safety and integration
problems surfaced. Putting a tankful of liquid hydrogen into the shuttle payload bay rightfully made
some people nervous. Even if the shuttle was not the best vehicle for large liquid hydrogen experi-
ments, it was the only game in town in the 1980’s.

At the same time CFMF was being designed, LeRC was working on a version of the Centaur
LH,/LOX upper stage to be flown in the shuttle payload bay. Extreme rancor developed between
LeRC and JSC over the Centaur program; the program was canceled following the Challenger disaster.
LeRC was used to behaving as a launch vehicle developer while JSC wanted to treat Centaur as a
payload with much stricter safety requirements. This strained intercenter relationship carried over to
CFMF.

The safety problems centered around the release of hydrogen into the payload bay or the vicin-
ity of the shuttle. Hydrogen is flammable in concentrations of 4 to 74 percent in air by volume.
CFMF had to be designed so that no two failures (of plumbing components, control systems, etc.)
would cause inadvertent release of hydrogen and so that it would be safe in all abort situations. This
required special shuttle interfaces and modifications, such as a cryogenic vent, that limited the
manifesting of the payload to certain locations in certain shuttles (refs. 43 and 44). Experiment
requirements for lightweight tankage also conflicted with safety requirements for large margins in
design.

LeRC and JSC spent years negotiating Shuttle manifesting and accommodations (such as fill/
drain and vent lines, cooling loops, flight deck switches) for CFMF. Although supercritical hydrogen
is flown on every shuttle in PRSA tanks, CFMF had to meet more stringent safety requirements than




PRSA and could not use PRSA vent provisions. This was because PRSA is part of a shuttle system
while CFMF was subject to payload rules (that are somewhat vague to this date). Following the
Challenger disaster, it was obvious, at the engineering level, that a hydrogen experiment on a manned
vehicle did not make sense in an era where low risk was paramount and low cost was a general guide-
line. Work continued through 1986 on CFMF (which was renamed CFMFE because Code R preferred
the name flight experiment to facility) while LeRC management tried to figure out what to do.

As end user of the technology that LeRC developed. Code R felt it was important to have the
support of MSFC and wanted to find a portion of the program to give them. LeRC upper management
agreed, but LeRC engineers had difficulty finding a part of the CFMF that could be given to MSFC.
LeRC had a branch of its Space Experiments Division dedicated to working CFM flight experiments
for years, whereas MSFC had two engineers working directly on CFM. Many ground facilities at all
the NASA centers had been mothballed during the 1970’s, and the people who had been working
CFM at MSFC were on other assignments.

LeRC did a study of alternate fluids for CFMFE and liquid nitrogen was deemed the best
replacement for liquid hydrogen. However, a liquid nitrogen experiment would only answer half the
questions (since the results could not be easily applied to hydrogen) at nearly the same cost. The cost

estimates had risen from the $2.4M for CFME to $106M for CFMFE by 1987 (Table I).

LeRC began looking at an alternate way of flying CFMFE; the facility might be launched on an
unmanned Delta launch vehicle (fig. 6). This approach would be more expensive than flying on the
shuttle because CFMFE would have to provide its own services, such as electric power, attitude
control, telemetry and command, etc. However, the experimental return also would be much greater.
The testing could go on for months instead of being limited by short, shuttle 7-day missions. The
acceleration environment would be much better since the CFMFE spacecraft could be placed in a
higher orbit where atmospheric drag would be much less, the spacecraft could control its thruster
firings, and there would be no astronauts to induce g-jitter. The experiment hardware design could be
optimized since safety restrictions would be much less severe on an unmanned vehicle.

Additional help in advocating CFMFE appeared, this time from the newly formed Office of
Exploration (OEX) at HQ. The head of OEX wrote a letter of support stating, "In view of the
importance of hydrogen management and transfer capability (it is an enabling capability for all, but the
least ambitious of the manned exploration missions), I am requesting that the decision to exclude the
CFMFE experiment package from the Cargo Bay be reviewed." (ref. 48). However, LeRC had be-
come convinced that a hydrogen Shuttle payload was not feasible and quit pursuing CFMFE.

LeRC began working seriously on the Delta-launched CFMFE spacecraft which was renamed
COLD-SAT for Cryogenic Orbiting Liquid Depot - Storage Acquisition and Transfer. Code R was
looking for the word "depot" in the name to show support for future exploration programs. In
February 1988, LeRC awarded three parallel Phase A study contracts on COLD-SAT to Martin
Marietta, Ball Aerospace (which had bought the cryogenic division of Beech), and General Dynamics
(refs. 30 to 32). In a September 1988 “Review of Advanced Studies," the NASA Administrator
agreed that it made sense to put CFMFE on an unmanned launch vehicle. There was unanimous
support for the need to conduct a CFM space experiment (ref. 51).



FULL CIRCLE

The late 1980’s saw a role reversal for LeRC and MSFC. MSFC, which had strongly advocated
Project THERMO in the 1960’s, was now pushing for a shuttle experiment while LeRC had given up
on hydrogen shuttle payloads and was pursuing a spacecraft along the lines of THERMO. LeRC had
a significant effort in ground-based experimentation and analytical modeling. MSFC had a low level
of effort in ground-based CFM technology, but they were trying to reactivate old facilities and expand
their program. MSFC followed the LeRC program closely and had representation on the COLD-SAT
proposal evaluation committee.

The design of COLD-SAT was carried out in parallel by the three contractors over the next
2 years. LeRC also had an in-house design effort at a low level that was free to incorporate ideas
from the contractors (figs. 7 to 9). Toward the end of 1989, LeRC decided that it would present the
in-house design at the COLD-SAT Nonadvocate Review (NAR) to be held in the spring of 1990 and
stepped up the in-house effort. The contractors made their final presentations in March 1990. Some
of the designs (especially the LeRC design) had a few remarkable similarities to Project THERMO
even though the LeRC in-house design team did not know of the THERMO design.

Throughout the COLD-SAT design effort, several reviews were held with representation from
other NASA centers. The MSFC position was that the COLD-SAT approach would take too long to
achieve its objectives, was too expensive, and that shuttle experiments were more appropriate. MSFC
was pushing various orbit transfer vehicles (OTV) and claimed to need CFM answers to support the
design of these vehicles for lunar base and manned Mars missions before COLD-SAT results would be
available. Code R and LeRC upper management still felt that it was important to have broad support
and were interested in making a role in the program for a development center like MSFC. Early in
the design phase, LeRC even offered to transfer management of the COLD-SAT project to MSFC, but
MSFC did not want it. LeRC pushed for the formation of a Cryogenic Fluid Programs Coordination
Committee to provide NASA-wide planning.

As the COLD-SAT design continued, LeRC management also came to believe that COLD-SAT
was too expensive for Code R. LeRC was managed by Code R, however, so LeRC upper manage-
ment did not feel free to go to other offices in HQ for funding. In early 1989, LeRC had decided to
exercise an option clause in the COLD-SAT contract to have two contractors begin a preliminary
design of a nitrogen experiment similar to CFME to be flown on the shuttle as a precursor to COLD-
SAT. This experiment was called the Cryogenic Orbital Nitrogen Experiment (CONE, fig. 10). Early
CONE advocacy included arguments that CONE would get early data to help in designing COLD-SAT
experiments as well as lunar/Mars vehicles.

LeRC and MSFC agreed to work together to develop concepts for alternatives to COLD-SAT.
LeRC had two of its contractors (Martin Marietta and General Dynamics) and MSFC had its space
transfer vehicle (STV) contractor (Boeing) look at different ways of getting the needed technology,
including free-flying spacecraft and shuttle experiments. A review was held at MSFC in November
1989 and at LeRC in January 1990. LeRC and MSFC agreed on the cost estimates and technology
return of the alternatives, but LeRC favored a COLD-SAT or mini-COLDSAT (two experiment tanks
rather than three and an overall smaller/lighter spacecraft) approach while MSFC preferred Martin
Marietta’s Cryogen Transfer Experiment (CTE) which was a shuttle experiment that would use liquid
nitrogen as the test fluid. MSFC proposed reflying the CONE hardware (that was being designed
under contract to LeRC) with a receiver tank and dubbed it the nitrogen transfer experiment (NTE).




In addition, LeRC and MSFC had increased the manpower working CFM related issues, and both
centers were designing small shuttle experiments using storable fluids.

In June 1990, a NAR was held for COLD-SAT. The findings of the review committee were
that the project was feasible and the total program cost estimates of $463M were reasonable. Code R
(now OAET, the Office of Aeronautics and Exploration Technology) told LeRC at a meeting on
October 26, 1990 at HQ that a $500M program was not acceptable, but perhaps a program in the
range $200M would be. The CONE project was acceptable to Code R with a transfer experiment
added. LeRC would manage the CONE-Extended project that would include the technical objectives
of a liquid transfer experiment. CONE had turned into something resembling CFMF with nitrogen just
as CFME had become CFMF. At the same meeting, the Associate Administrator of Code R (a former
shuttle manager) expressed interest in looking into the possibility of flying a liquid hydrogen
experiment on the shuttle.

CONCLUDING REMARKS

NASA’s CFM technology program has been trapped in a cycle of repetitive design studies (see
the chronology on page 28). Millions of dollars have been spent over the last 25 years without getting
any flight data in return. The need for CFM technology development through space experimentation
has been reiterated through the years by various committees and workshops. Large-scale experiments
have not progressed past the design stage because of a lack of willingness to spend the amount of
money required for a large space experiment in this area. Artificial timetables have been imposed
depending on which future program had the most support at HQ. If a CFM project could not be
completed in time to support projected lunar/Mars mission design schedules, it was not attempted, and
when the lunar/Mars mission disappeared, so did the justification for timely technology development.
Two questions that have perpetually greeted a finished design study are: "Will it be done in time?"
and "Are we doing the right thing?" The lack of historical perspective on these questions has hindered
progress in the development of CFM technblogy.

NASA upper management continues to return to the approach of flying liquid hydrogen
payloads on the shuttle. In a search for a cheap, low-risk solution, Code R spends time and money on
paper studies to reevaluate the situation for each new management team. These studies result in space
experiment designs that look similar because the basic constraints on the design have not changed over
the years and little, real progress has been made in the technology. Compare Project THERMO
(figs. 1 and 2) with COLD-SAT (figs. 7 to 9) or CFME (fig. 3) and CFMF (figs. 4 and 5) with CONE
(fig. 10). In the case of CFM technology development, history has repeated itself and likely will
continue doing so.




NASA CRYOGENIC FLUID MANAGEMENT SPACE EXPERIMENT CHRONOLOGY

February 1961
First of nine liquid hydrogen experiments flown on Aerobee sounding rockets by LeRC
scientists through 1965 (ref. 10 to 14 and 55)

October 1963
Zero-Gravity Fluid Behavior Review and Planning Meeting held at NASA HQ, sponsored by
OART, attendees from all centers, need for CFM technology and review of current research
presented (ref. 1)

February 1964
First successful Atlas pod experiment with liquid hydrogen flown by LeRC scientists (ref. 15)

December 1964
Atlas-Centaur development flight AC-4, investigated liquid positioning and attempted engine
restart, LeRC managed program (ref. 16)

February 1966
Program Plan for Earth Orbital Low-G Heat Transfer and Fluid Mechanics Experiments
published by MSFC (ref. 33)

April 1966
AC-8, investigated settling, slosh, engine restart (ref. 18)

July 1966
Saturn IB development mission AS-203, television cameras in S-IVB hydrogen tank, engine
restart tests, MSFC managed program (ref. 17)

August 1966
Project THERMO (Thermo and Hydrodynamic Experiment Research Module in Orbit) design
initiated at McDonnell Douglas under contract with MSFC October 1966 Conference on Long-
Term Cryo-Propellant Storage in Space held at MSFC (ref. 3)

March 1967

"Project THERMO Final Report” design of a manned experiment to be launched on a Saturn 1B

(ref. 19)
September 1967
"Project THERMO Phase B Prime Final Report" conceptual design of experiments to be

launched on smaller, unmanned launch vehicles (ref. 20)

March 1968

"Results of a Preliminary Design and System Integration Study of Flying Several Cryogenic and

Fluid Mechanics Experiments on an Unmanned Saturn IB for Long-Term, Low-g Investiga-
tions" supported by MSFC (ref. 21)




January 1971
Preliminary Program Plan for Liquid Hydrogen Transfer Flight Experiment prepared by LeRC
for OART, LH, shuttle experiment proposed (ref. 34)

June 1973
Report of the Ad Hoc Committee on the Assessment of Reduced Gravity Fluid and Thermal
Technology to OAST recommends "dedicated flight experiments”

June 1976
McDonnell Douglas starts conceptual design of CFM experiment under LeRC contract in
response to a Spacelab flight opportunity

November 1976
Special report "Spacelab Cryogenic Fluid Management Experiment" conceptual design of a LH,
Shuttle experiment by McDonnell Douglas for LeRC (ref. 22)

August 1977
Cryogenic Fluid Management Experiment (CFME) Project Plan submitted by LeRC to OAST
(refi :35)

August 1978
CFME Project Plan approved by OAST

November 1978
CFME contracted effort with Martin Marietta begins

May 1979
General Dynamics study of Orbital Propellant Transfer Experiment under contract to LeRC

June 1979
CFME Preliminary Design Review (PDR), CFME approach questioned by NASA Headquarters

October 1979
CFME Phase | Flight Safety Review at JSC

December 1979
In-Space Cryogenic Fluid Management R&T Ad Hoc Planning Committee Report to OAST,
recommends a multimission facility (ref. 36)

April 1980
CFME program modified to include transfer experiment

May 1980
CFME Phase | Ground Safety Review at KSC

August 1980

"Conceptual Design of an Orbital Propellant Transfer Experiment" General Dynamics (GDC) for

LeRC (ref. 23)
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April 1981
Final report "Conceptual Design of an In-Space Cryogenic Fluid Management Facility" Beech
for LeRC under NAS3-22260 CFME Critical Design Review (ref. 24)

October 1981
CFME Final Report MMDA for LeRC (ref. 25)

December 1981
Orbiter Hydrogen Transfer Experiment (OHTE) final study review, Rockwell for JSC (ref. 26)

August 1982
OHTE follow-on report (STS-82-0507), Rockwell IR&D study

September 1982 ;
Cryogenic Fluid Management Facility (CFMF) design contract begins, MMDA for LeRC

March 1983
CFMF Conceptual Design Review (ref. 27)

May 1983
CFMF Technical Interchange Meetings (TIM) at JSC/KSC

August 1983
CFMF manifesting request (STS Form 100) approved

October 1983
CFMF Phase 0/1 Flight and Ground Safety Reviews at JSC and KSC; Initial PIP review

November 1983
CFMF PDR

January 1984
CFMF Phase | Flight Safety Review; Integration meeting at JSC

March 1984
JSC letter to Office of Space Flight (OSF): STS cannot accommodate CFMF

June 1984
OSF letter to JSC: resume CFMF integration

October 1984
CEMF review at NASA HQ with LeRC, JSC, KSC

November 1984
CFMF TIM at KSC

February 1985
CFMF TIM at JSC on PIP and safety
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May 1985
CFMF TIM at JSC on avionics

June 1985
CFMF TIM at JSC on PIP and safety; CFMF Project Plan submitted by LeRC to OAST
(ref. 37)

July 1985
CFMF Interim Requirements Review

September 1985
CFMF Phase 1A Flight Safety Review, Space Station Experiment Definition: Long-Term
Cryogenic Storage study contract initiated at Beech for LeRC (ref. 29)

October 1985
CFMF System Requirements Review at LeRC

December 1985
CFMF Final Report (ref. 28)

January 1986
Challenger Disaster

March 1986
Orbiter hydrogen venting study results presented by Rockwell to JSC

April 1986
CFMF TIM at KSC on safety and processing flow

May 1986
CFMFE Nonadvocate Review

July 1986
CFMFE TIM at JSC; JSC letter to LeRC on termination of CFMFE integration (ref. 44)

August 1986
LeRC letter to JSC, request reconsideration of CFMFE

November 1986 ‘
CFMFE project status review, LeRC presentation to OAST, Delta-launched CFMFE concept
presented

April 1987
Cryogenic Fluid Management Technology Workshop held at LeRC (ref. 9); COLD-SAT
procurement strategy presented to OAST by LeRC

May 1987
Meeting at MSFC with LeRC Management on MSFC role in COLD-SAT

12



August 1987
Cryogenic Fluids Technology Office established at LeRC; COLD-SAT Project Plan submitted

by LeRC to OAST (ref. 38)

October 1987
COLD-SAT in-house feasibility study initiated

December 1987
Cryogenic Fluid Management overview presented to Office of Exploration (OEX); LeRC in-

house meeting on MSFC role in COLD-SAT

February 1988
COLD-SAT Phase A feasibility study contracts awarded to MM, GD, and Ball supporting
LeRC; Letter from OEX to OSF requesting reconsideration of CFMFE (ref. 48)

July 1988
Cryogenic Fluid Management program overview presented to OAST by LeRC

August 1988
COLD-SAT Task II contractor reviews

September 1988
COLD-SAT presentation to NASA Administrator by OAST

December 1988
In-Space Technology Experiment Workshop, Fluid Management session identifies a liquid
nitrogen flight experiment to provide technology for Space Station Freedom, ISTV, and COLD-
SAT

March 1989
COLD-SAT Task IIT contractor Preliminary Requirements Review

May 1989
Second meeting of the Cryogenic Fluid Programs Coordination Committee, MSFC agrees that
LeRC should be lead center for the nitrogen pressure control experiment assuming ISTV
objectives met

January 1990
Cryogenic Orbital Nitrogen Experiment (CONE) Phase A studies initiated under Task V of
COLD-SAT contracts with MM and Ball; Review of COLD-SAT alternatives at LeRC with
LeRC contractors MM and GD and MSFC contractor Boeing making presentations

March 1990
COLD-SAT Task IV final contractor Phase A reviews (refs. 30 to 32) First Workshop on
Commercialization of Space Fluid Management held in Huntsville, AL

April 1990

Joint presentation by LeRC and MSFC to Cryogenic Fluid Programs Coordination Committee
on COLD-SAT alternatives

13




June 1990
COLD-SAT Nonadvocate Review

September 1990
CONE Phase A completed, concept reviews held at LeRC October 1990 Head of OAET rejects
COLD-SAT as too expensive, agrees to LeRC management of Extended-CONE to include
transfer experiment
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TABLE I. - NASA LEWIS CRYOGENIC FLUID
MANAGEMENT SPACE EXPERIMENT
PROGRAM COST ESTIMATES

Program Year Basis $ Million
name (then year)
CFME 1978 | CONTRACT 2.4
CFMF 1983 ROM 10
CFMF 1985 PDR 66
CFMFE 1987 NAR 106
COLD-SAT 1987 ROM 314.3
COLD-SAT 1990 NAR 463
CONE 1990 ROM 64.1
CONE-E 1990 ROM 76.5
Notes:

ROM - Rough Order of Magnitude
PDR - Preliminary Design Review

NAR - Nonadvocate Review
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ACRONYMS

AC - Atlas Centaur

CFM - Cryogenic Fluid Management

CFME - Cryogenic Fluid Management Experiment

CFMF - Cryogenic Fluid Management Facility

CFMEFE - Cryogenic Fluid Management Flight Experiment
COLD-SAT - Cryogenic Orbiting Liquid Depot - Storage Acquisition and Transfer
CONE - Cryogenic Orbital Nitrogen Experiment

CTE - Cryogenic Transfer Experiment

GD - General Dynamics

HQ - Headquarters

IR&D - Independent Research and Development

ISTV - Interim Space Transfer Vehicle

JSC - Johnson Space Center

KSC - Kennedy Space Center

LAD - Liquid Acquisition Device

LEM - Lunar Excursion Module

LeRC - Lewis Research Center

LH, - Liquid Hydrogen

LOX - Liquid Oxygen

MMDA (or MM) - Martin Marietta Denver Aerospace
MSC - Manned Space Center (JSC)

MSFC - Marshall Space Flight Center

NACA - National Advisory Committee on Aeronautics
NAR - Nonadvocate Review

NASA - National Aeronautics and Space Administration
OAET - Office of Aeronautics and Exploration Technology
OART - Office of Advanced Research and Technology
OAST - Office of Aeronautics and Space Technology
OEX - Office of Exploration

OHTE - Orbiter Hydrogen Transfer Experiment

OSF - Office of Space Flight

PDR - Preliminary Design Review

PIP - Payload Integration Plan

PRSA - Power Reactant Storage Assembly

R&T - Research and Technology

STS - Space Transportation System

THERMO - Thermo and Hydrodynamic Experiment Research Module in Orbit
TIM - Technical Interchange Meeting

TVS - Thermodynamic Vent System
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